Team of International Scientists Identify Common Vulnerabilities Across SARS-CoV-2, SARS-CoV-1 and MERS Coronaviruses | Be Korea-savvy

Team of International Scientists Identify Common Vulnerabilities Across SARS-CoV-2, SARS-CoV-1 and MERS Coronaviruses


press-release-notification

SAN FRANCISCO, Oct. 15 (Korea Bizwire) — In a study published online in Science today, an international team of almost 200 researchers from 14 leading institutions in six countries studied the three lethal coronaviruses SARS-CoV-2, SARS-CoV-1 and MERS-CoV in order to identify commonly hijacked cellular pathways and detect promising targets for broad coronavirus inhibition. In addition, using the molecular insights gained from this multidisciplinary, systematic study of coronaviruses, the group performed an analysis of medical records of approximately 740,000 patients with SARS-CoV-2 that altered clinical outcomes in these patients to uncover approved therapeutics with potential for rapid deployment. These results demonstrate how molecular information can be translated into real-world implications for the treatment of COVID-19, an approach that can ultimately be applied to other diseases in the future.

“This far-reaching international study elucidates for the first time commonalities and, importantly, vulnerabilities, across coronaviruses, including our current challenge with the SARS-CoV-2 pandemic,” said Nevan Krogan, Ph.D., director of the Quantitative Biosciences Institute (QBI) at the School of Pharmacy at UC San Francisco, senior investigator at Gladstone Institutes, and lead investigator of the study. “In unique and rapid fashion, we were able to bridge biological and functional insights with clinical outcomes, providing an exemplary model of a differentiated way to conduct research into any disease, rapidly identify promising treatments and advancing knowledge in the fields of both science and medicine. This body of work was only made possible through the collaborative efforts of senior scientific thought leaders and teams of next-generation researchers at premier institutions across the globe.”

In this collaboration, academic and private sector scientists from UCSF, QBI’s Coronavirus Research Group (QCRG), Gladstone Institutes, EMBL’s European Bioinformatics Institute (EMBL-EBI) in Cambridge, England, Georgia State University, Icahn School of Medicine at Mount Sinai in New York, Institut Pasteur in Paris, Cluster of Excellence CIBSS at the University of Freiburg in Germany, University of Sheffield in the UK, and other institutions as well as the companies Aetion, who makes software for analysis of real-world data and genome engineering company Synthego, participated in the research.

Scientific Revelations from a Cross-Coronavirus Study of Protein Function
Building on their previous work published in both Nature and Cell, the researchers studied SARS-CoV-2, SARS-CoV-1 and MERS-CoV comprehensively, using biochemical, proteomic, genetic, structural, bioinformatic, virological and imaging approaches to identify conserved target proteins and cellular processes across coronaviruses. Leveraging the SARS-CoV-2 map of how the SARS-CoV-2 viral proteins interact with their target human host cell proteins, called an “interactome,” the team built the protein-protein interaction maps for SARS-CoV-1 and MERS-CoV, highlighting several key cellular processes that are shared across all three coronaviruses. These common pathways and protein targets represent high-priority targets for therapeutic interventions for this and future pandemics.

“Working diligently since the early days of SARS-CoV-2 identification, we came together with the individual strengths of each organization to interrogate the biology and functional activities of these viruses, looking to exploit weaknesses,” commented Veronica Rezelj, Ph.D., of Institut Pasteur. “In our latest study, we augmented our knowledge base by driving down into two additional coronaviruses, elucidating mechanisms across viruses that allow potential therapeutic interventions.”

Structural Understanding of a Unique Interaction between viral Orf9b and Human Protein Tom70, Which Normally Supports Antiviral Immune Response
Interestingly, the team found that the mitochondrial outer membrane protein Tom70 interacts with both SARS-CoV-1 and SARS-CoV-2 protein Orf9b. Tom70 is normally involved in the activation of mitochondrial antiviral-signaling protein (MAVS) and is essential for an antiviral innate immune response. Orf9b, by binding to the substrate recognition site of Tom70, inhibits Tom70’s interaction with heat shock protein 90 (Hsp90), which is key for its function in the interferon pathway and induction of apoptosis upon virus infection.

In a collaboration among more than 60 scientists in the QCRG led by Klim Verba and Oren Rosenberg at QBI, the structure of Orf9b bound to the active site of Tom70 was determined by cryoelectron microscopy (cryoEM) to a remarkable three-angstrom resolution. A noteworthy and rare finding showed that Orf9b, when by itself, forms a dimer and structurally a beta sheet, but exists as an alpha helix when bound to Tom70. Using the structural image of the bound proteins, the scientists were able to discover that a key residue in the interaction with Hsp90 is moved out of position, suggesting that Orf9b may modulate key aspects of the immune response, interferon and apoptosis signaling via Tom70. The functional significance and regulation of the Orf9b-Tom70 interaction require further experimental elucidation. This interaction, however, which is conserved between SARS-CoV-1 and SARS-CoV-2, could have value as a pan-coronavirus therapeutic target.

Pathway Targets for Potential Clinically-Approved Therapeutics
Using the three coronavirus interactomes as a guide, the team performed CRISPR and RNA interference (RNAi) knockouts of the putative host proteins of each virus and studied how loss of these proteins altered the ability of SARS-CoV-2 to infect human cells. They determined that 73 of the proteins studied were important for the replication of the virus and used this list to prioritize evaluation of drug candidates. Among these were the receptor for the inflammatory signaling molecule IL-17, which has been identified in numerous studies as an important indicator of disease severity; prostaglandin E synthase 2 (encoded by PTGES2), which functionally interacts with the Nsp7 protein in all three viruses; and sigma receptor 1, an interactor of Nsp6 from SARS-CoV-1 and SARS-CoV-2, which the group previously showed was a promising drug target in the laboratory setting.

Armed with this knowledge, the group performed a retrospective analysis of medical billing data from approximately 740,000 people who tested positive for SARS-CoV-2 or were presumptively positive.

In the outpatient setting, SARS-CoV-2-positive, new users of indomethacin, a non-steroidal anti-inflammatory drug (NSAID) that targets PGES-2, were less likely than matched new users of celecoxib, an NSAID that does not target PGES-2, to require hospitalization or inpatient services.

In the inpatient setting, again leveraging the medical billing data, the group compared the effectiveness of typical antipsychotics, namely haloperidol, which have activity against sigma receptor 1, versus atypical antipsychotics, which do not. Half as many new users of typical antipsychotics compared to new users of atypical antipsychotics progressed to the point of requiring mechanical ventilation. Typical antipsychotics can have significant adverse effects, but other sigma receptor 1-targeting drugs exist and more still are in development.

“It is critical to note that the number of patients taking each of these compounds represent small, non-interventional studies,” commented Dr. Krogan. “They are nonetheless powerful examples of how molecular insight can rapidly generate clinical hypotheses and help prioritize candidates for prospective clinical trials or future drug development. A careful analysis of the relative benefits and risks of these therapeutics should be undertaken before considering prospective studies or interventions.”

“These analyses demonstrate how biological and molecular information are translated into real-world implications for the treatment of COVID-19 and other viral diseases,” said Pedro Beltrao, Ph.D., group leader at EMBL’s European Bioinformatics Institute. “After more than a century of relatively harmless coronaviruses, in the last 20 years we have had three coronaviruses which have been deadly. By looking across the species, we have the capability to predict pan-coronavirus therapeutics that may be effective in treating the current pandemic, which we believe will also offer therapeutic promise for a future coronavirus as well.”

The full scientific publication titled “Comparative Host-Coronavirus Protein Interaction Networks Reveal Pan-Viral Disease Mechanisms” along with images and a video can be viewed here: https://science.sciencemag.org/lookup/doi/10.1126/science.abe9403.

Press Conference Details:
Today’s press conference, which will include Drs. Krogan, Rezelj and Jeremy Rassen of Aetion, who will review findings from their research, can be accessed here. Spokespersons from other participating organizations will also be available for Q&A.

Media Briefing
October 15, 2020
8:00 a.m. PDT / 11:00 a.m. EDT / 5:00 p.m. CEST
Publication: https://science.sciencemag.org/lookup/doi/10.1126/science.abe9403

Register in advance here
Log in live: https://ucsf.zoom.us/j/97599689043?pwd=aU9UOS9YMytjWmtXcWIxbjhra3dvdz09

About QBI: The Quantitative Biosciences Institute (QBI) is a University of California organized research unit reporting through the UCSF School of Pharmacy. QBI fosters collaborations across the biomedical and the physical sciences, seeking quantitative methods to address pressing problems in biology and biomedicine. Motivated by problems of human disease, QBI is committed to investigating fundamental biological mechanisms, because ultimately solutions to many diseases have been revealed by unexpected discoveries in the basic sciences. Learn more at qbi.ucsf.edu.

About UCSF: The University of California, San Francisco (UCSF) is exclusively focused on the health sciences and is dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. UCSF Health, which serves as UCSF’s primary academic medical center, includes top-ranked specialty hospitals and other clinical programs, and has affiliations throughout the Bay Area. Learn more at ucsf.edu or see our Fact Sheet .

About Gladstone Institutes: To ensure our work does the greatest good, Gladstone Institutes focuses on conditions with profound medical, economic, and social impact—unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with UC San Francisco. Learn more at gladstone.org.

Authorship and funding: This work was funded by grants from the National Institute of Mental Health and the National Institute of Allergy and Infectious Diseases, both part of the National Institutes of Health; the Defense Advanced Research Projects Agency; the Center for Research for Influenza Pathogenesis; the Centers of Excellence for Influenza Research and Surveillance of the National Institute of Allergy and Infectious Diseases; the Centers of Excellence for Integrative Biology of Emerging Infectious Diseases of the Agence Nationale de la Recherche (France); F. Hoffmann-LaRoche AG; Vir Biotechnology, Centre for Integrative Biological Signalling Studies (CIBSS), European Research Council (ERC) and the Ron Conway Family. Shokat is a Howard Hughes Medical Institute investigator. A complete list of authors and full funding information is available in the Science paper.

Media Contacts  
   
UCSF QBI UCSF
Angela Bitting, Wheelhouse LSA Pete Farley, UCSF Office of Communications
a.bitting@comcast.net peter.farley@ucsf.edu
925-202-6211 415-317-3781
   
Sylvia Wheeler, Wheelhouse LSA  
swheeler@wheelhouselsa.com  
   
Gladstone Institutes  
Julie Langelier, Gladstone Communications  
Julie.langelier@gladstone.ucsf.edu  
415-734-5000  

Photos accompanying this announcement are available at:
https://www.globenewswire.com/NewsRoom/AttachmentNg/20f26729-e1f0-4c37-9676-73424c715e1d
https://www.globenewswire.com/NewsRoom/AttachmentNg/36a05e8d-b8b4-4f1a-be67-2e41c38c7b81 

A video accompanying this announcement is available at:
https://www.globenewswire.com/NewsRoom/AttachmentNg/04b308ed-b7b9-45c3-a05a-acae5d6b5cd1

Source: Quantitative Biosciences Institute via GLOBE NEWSWIRE

press release curation and disclaimer notice

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>